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Abstract. We consider the scattering of brane fields due to t-channel massive graviton exchanges in the
Randall–Sundrum model. The eikonal amplitude is analytically calculated and both differential and total
neutrino–nucleon cross sections are estimated. The event rate of quasi-horizontal air showers induced by
cosmic neutrinos, which can be detected at the Pierre Auger Observatory, is presented for two different
fluxes of cosmogenic neutrinos.

1 Introduction

The detection of air showers induced by ultra-high en-
ergy neutrinos may help to solve many important prob-
lems, such as the propagation of cosmic neutrinos to the
Earth and their interactions with the nucleons at ener-
gies around tens (hundreds) of TeV. In this energy region,
neutrino–nucleon interactions may be strong due to new
physics. There is a large class of models in a space-time
with extra spacial dimensions which result in a new TeV
phenomenology. In the present paper we will consider an
approach with non-factorizable metric proposed in [1,2]
and study scattering of the SM fields in this scenario.

The RS model [1,2] is a model of gravity in a slice of
a 5-dimensional anti-de Sitter space (AdS5) with a single
extra dimension compactified to the orbifold S1/Z2. The
metric is of the form

ds2 = e−2κ|y| ηµν dxµ dxν + dy2. (1)

Here y = rcθ (0 � θ � π), rc is the “radius” of the extra
dimension, and the parameter κ defines a scalar (negative)
curvature of the space.

From a 4-dimensional action one can derive the rela-
tion

M̄2
Pl =

M3

κ

(
1 − e−2πκr

) � M3

κ
, (2)

which means that κ ∼ M̄Pl ∼ M , with M being a 5-
dimensional Planck scale.

We will consider the so-called RS1 model [1] which
has two 3-dimensional branes with equal but opposite sign
tensions which are located at the point y = πrc (called
the TeV brane) and at the point y = 0 (referred to as the
Planck brane). All SM fields are constrained to the TeV
brane, while the gravity propagates in the bulk (all spatial
dimensions).
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From the point of view of an observer located on the
TeV brane, there exist an infinite number of graviton
Kaluza–Klein (KK) excitations with masses

mn = xnκ e−πκrc , n = 1, 2, . . . , (3)

where xn are zeros of the Bessel function J1(x):1

J1(xn) = 0, n = 1, 2, . . . (4)

By using a linear expansion of the metric, one can
derive the interaction Lagrangian2

L = − 1
M̄Pl

Tµν h(0)
µν − 1

Λπ
Tµν

∞∑
n=1

h(n)
µν , (5)

where
Λπ = M̄Pl e−πκrc (6)

is the physical scale on the TeV brane. It can be chosen as
small as 1 TeV for a thick slice of the AdS5, rc � 12/κ �
60 lPl. We see from (5) that the couplings of all massive
states are suppressed by Λ−1

π only, while the zero mode
couples with usual strength defined by the reduced Planck
mass M̄Pl = MPl/

√
8π.

The main phenomenological parameters of the model
are the scale Λπ and the ratio

µ =
κ

M̄Pl
. (7)

The present experimental data together with theoretical
bounds on the curvature of the AdS5 restrict the allowed
region for the variable µ (see, for instance, Fig. 1, taken
from [3]):

0.01 � µ � 0.1. (8)

1 The first four values of xn are 3.83, 7.02, 10.17, and 13.32.
2 We do not consider a radion field [6] here because it is

irrelevant for high-energy t-channel exchanges.
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Fig. 1. Experimental and theoretical constraints on the RS
model in the two-parameter κ/M̄Pl–m1 plane [3]. The allowed
region lies in the center as indicated

The allowed value of µ is restricted by the so-called nat-
uralness and requiring the 5-dimensional curvature to be
small enough to consider linearized gravity on the brane.
Thus, the lightest masses of the KK graviton modes,
mn = xnµΛπ, are of the order of 1 TeV [4, 5].

Our paper has the following structure. In the next sec-
tion we consider interactions of the SM fields on the brane
in the RS model induced by exchanges of massive gravi-
tons. The eikonal amplitude is calculated and the elas-
tic cross section for different sets of the RS parameters
and/or invariant energy is estimated. In Sect. 3 we use
these results to study the scattering of ultra-high energy
cosmic neutrino off atmospheric nucleons. The neutrino–
nucleon cross section is calculated and the event rate of
quasi-horizontal neutrino showers expected at the Auger
Observatory is presented. Our conclusions and discussions
are the topics of Sect. 4.

2 Eikonal amplitude in the RS model

In what follows, we will employ the zero width approxima-
tion for the graviton KK resonances. The Born amplitude
corresponding to t-channel exchange looks like (both the
massless mode and KK gravitons contribute)

AB(s, t) =
8πGNs2

−t
+

s2

Λ2
π

∞∑
n=1

1
−t + m2

n

. (9)

The sum in (9) converges very rapidly in n, since xn =
π (n+1/4)+O(n−1) [7]. We consider the scattering of two
particles living on the TeV brane. Thus, in (9) t means the
4-dimensional momentum transfer which is well-defined
and conserved.

Let us underline that in (9) we sum spin-two par-
ticles with different KK numbers n (non-reggeized KK
gravitons). In a more general approach, one should sum
Regge trajectories αn(t) which are numerated by n (KK
charged gravireggeons). For the ADD model, this was

done in [8]. The results of [9,10] can be reproduced in
the limit αn(t) → 2. As for the RS model, results on
the gravireggeon contribution to the eikonal amplitude are
presented in [13].

Generally, the massive KK states may decay to a pair
of SM particles. The partial widths are proportional to
m3

n/Λ2
π, where mn is the mass of the resonance. In partic-

ular, the partial decay widths to massless gauge bosons,
fermions, and a Higgs pair are3

Γ (h(n) → V V ) = NV a
m3

n

40πΛ2
π
,

Γ (h(n) → ff̄) = Nf
m3

n

160πΛ2
π
,

Γ (h(n) → HH̄) =
m3

n

480πΛ2
π
. (10)

Here NV = 1(8) for photons and electroweak bosons (glu-
ons), Nf = 1(3) for the lepton (quark pair) mode, and
a = 1/2 for identical particles. Then for the total width of
the massive KK graviton in the RS model, Γn, we get the
estimate (see also [12])

Γn � mn (0.31 µ xn)2. (11)

Since the sum which we are interested in converges very
rapidly in n (see the comment after (9)), we conclude from
(11) and (8) that effectively Γn/2 � mn.

The sum (9) can be calculated analytically by the use
of the formula [7]

∞∑
n=1

1
z2
n,ν − z2 =

Jν+1(z)
2 z Jν(z)

, (12)

where zn, ν (n = 1, 2, . . .) are zeros of the function
z−νJν(z). As a result, we obtain

AB(s, t) =
8πGNs2

−t
+

s2

2µΛ3
π

1√−t

I2(v)
I1(v)

. (13)

Here Ii(z) (i = 1, 2) are the modified Bessel functions
and v =

√−t/µΛπ. Taking into account the properties of
Ii(x), we conclude from (13) that the contribution of the
massive graviton modes dominates at large |t|:

AB(s, t)||t|�µΛπ
� s2

2µΛ3
π

1√|t| . (14)

Note that we would get another asymptotics in t, namely,
AB(s, t) ∼ |t|−1, if we sum only a finite number of massive
gravitons.

As it was shown in [9], it is ladder diagrams that make
a leading contribution of the KK gravitons to the am-
plitude and results in the eikonal representation for the
amplitude (q2 = −t):

Aeik(s, t) = 2is
∫

d2b eiq b
[
1 − eiχ(s,b)

]
, (15)

3 These expressions can be obtained by the replacement
M̄−2

Pl → Λ−2
π in the corresponding formulae derived for large

extra dimensions in [11]. We have also neglected the masses of
the SM particles, since mSM � mn.
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with the eikonal given by

χ(s, b) =
1

4πs

∫
dq q J0(q b) AB(s, −q2). (16)

The proper accounting for the massless mode has been
presented in [10]. The result is

Aeik(s, t) = eiφ4

{
8πGNs

−t

Γ (1 − iGNs)
Γ (1 + iGNs)

+ 4πis (−t)−iGNs

∞∫
0

db b1−2iGNs J0

(
b
√

|t|
)

×
[
1 − eiχmass(s,b)

]}
. (17)

Here χmass(s, b) denotes the contribution of the massive
modes to the eikonal, GN is the Newton constant, and
φ4 is a 4-dimensional (infinite) phase. The first term in
the RHS of (17) is the well-known 4-dimensional result
derived by different methods in [14]. It is negligible at any
conceivable energy and momentum transfer, and we can
write (up to a phase factor)

Aeik(s, t) � 4πis

∞∫
0

db b J0

(
b
√

|t|
) [

1 − eiχmass(s,b)
]
. (18)

It follows from (13) that the eikonal depends on two
dimensionless variables, s/Λ2

π and

u = bµΛπ, (19)

and it looks like

χ̃mass(s, u) ≡ χmass

(
s,

u

µΛπ

)

=
1
8π

s

Λ2
π

∞∫
0

dv J0(uv)
I2(v)
I1(v)

. (20)

The eikonal (20) is very well approximated by the follow-
ing expression (see the appendix for details):

χ̃mass(s, u) �
√

3
16π

s

uΛ2
π

exp(−2
√

3 u). (21)

At
√

s � 5 Λπ, the eikonal is exponentially small out-
side the region

b � b0(s) =
1√

3 µΛπ
ln

√
s

Λπ
. (22)

At b → 0, it is proportional to b−1. Thus, we can roughly
estimate the high-energy behavior of the elastic cross sec-
tion:

σel(s) � π
3 (µΛπ)2

ln2
√

s

Λπ
≈

π
m2

1
ln2 s

Λ2
π
, (23)

where m1 is the mass of the lightest KK graviton.

Let us underline that the Froissart–Martin-like formula
(23) describes the contribution of the massive graviton
modes. The presence of the massless graviton in the theory
should result in infinite elastic and total cross sections [15].
However, its contribution can be safely neglected in our
further calculations.

We can rewrite (18) in the form

Aeik(s, t) (24)

� 4πi
s

(µΛπ)2

∞∫
0

du u J0

(
u

√−t

µΛπ

) [
1 − eiχ̃mass(s,u)

]
.

Correspondingly, the differential cross section in the di-
mensionless variable

y =
−t

s
(25)

is defined by

dσel

dy
=

1
16πs

|Aeik(s, −ys)|2, (26)

and we get the estimate

dσel

dy

∣∣∣∣
y=0

� π s

36 (µΛπ)4
ln4

√
s

Λπ
. (27)

It follows from (26) and (24) that dσel/dy depends only
on the variable y of (25), the parameter µ, and the ra-
tio

√
s/Λπ, in addition to the dimensional factor (µΛπ)−2,

which defines the magnitude of the cross section. In par-
ticular, we have dσel/dy|y=0 = s (µΛπ)−4 f(s/Λ2

π), and
σel = (µΛπ)−2 g(s/Λ2

π, µ), were f(x) and g(x, y) are di-
mensionless functions defined via the eikonal.

The results of our calculations with the use of formulae
(24) (26) and (20) are presented in Figs. 2–5. The curves
in Fig. 2 which show the energy dependence of the cross
section were obtained for Λπ = 2 TeV and µ = 0.05. The

Fig. 2. The differential cross section as a function of dimen-
sionless variable y for three fixed values of the invariant energy.
The parameters of the RS model are chosen to be Λπ = 2 TeV,
and µ = 0.05
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Fig. 3. The differential cross section as a function of variable
y for three values of the mass scale Λπ at fixed energy s =
2 · 1011 GeV2 (with the parameter µ = 0.1)

Fig. 4. The differential cross section as a function of variable
y for three values of the RS parameter µ at fixed energy s =
2 · 1010 GeV2 (with the scale Λπ = 1 TeV)

Fig. 5. The reduced (dimensionless) differential cross section
as a function of variable y for different parameter sets (Λπ, µ)
at invariant energy s = 2·1010 GeV2. The product µΛπ is taken
to be 100 GeV (200 GeV) for the three first (two last) sets

dependence of the differential cross section on the param-
eter Λπ at s = 2·1011 GeV2, µ = 0.1, is presented in Fig. 3.
Next Fig. 4 demonstrates the dependence of dσ/dy on the
parameter µ at s = 2 · 1010 GeV2, Λπ = 1 TeV. Finally, in
Fig. 5 the reduced differential cross section (namely, the
cross section multiplied by the factor (µΛπ)2) is shown for
several sets (Λπ, µ).

3 Neutrino–nucleon cross section
and neutrino-induced air showers

Let us now estimate the neutrino–nucleon differential
cross section as a function of the variable y. The neutrino
scatters off quarks and gluons which are distributed inside
the nucleon. Thus, the neutrino–nucleon cross section is
represented by

dσνN (s)
dy

=

1∫
xmin

dx
∑

i

fi(x, M2)
dσνi(ŝ)

dy
, (28)

where fi(x, M2) is the distribution of parton i in momen-
tum fraction x, and ŝ = xs is the invariant energy of the
partonic subprocess. The partonic differential cross sec-
tion, dσνi(ŝ)/dy, is defined via the eikonal (21) taken at
the energy

√
ŝ.

We use the set of parton distribution functions (PDFs)
from [16] based on the analysis of existing deep inelas-
tic data in the next-to-leading order QCD approximation
in the fixed-flavor-number scheme. The extraction of the
PDFs is performed in [16] simultaneously with the value
of the strong coupling and higher-twist contributions to
the structure functions. The PDFs are available in the re-
gion 10−7 < x < 1, 2.5 GeV2 < Q2 < 5.6 · 107 GeV2 [16].
So no extrapolation in the variable x is needed.

We put xmin = Λ2
π/s in (28). Since the eikonal is ef-

fectively cut at b = b0(ŝ), see (22), we take the mass scale
in the PDFs to be M = 1/b0(

√
ŝ). The effective impact

parameter b0 is much smaller than the size of the nucleon.
Thus, our assumption that the neutrino interacts with the
constituents of the nucleon and probes its inner structure
is well justified.

The differential cross section as a function of y, the en-
ergy fraction deposited from the neutrino to the nucleon,
is presented in Fig. 6 for the neutrino energy Eν = 10 EeV
and three sets of parameters of the RS model.

In order to estimate the effective range of the variable
y which contributes to the neutrino–nucleon cross section,
we have calculated the quantity

σνN (y > y0) =

1∫
y0

dσνN

dy
, (29)

where y0 is the minimum fraction of energy lost by the
neutrino (deposited to the nucleon). The dependence of
the quantity σel(y > y0) on y0 at different values of the
neutrino energy Eν is shown in Fig. 7 for Λπ = 2 TeV,
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Fig. 6. The differential neutrino–proton cross section as a
function of y, the fraction of the neutrino energy deposited
to the proton

Fig. 7. The inelastic neutrino–proton cross section obtained
by integrating the differential cross section in the region y0 �
y � 1 as a function of y0, the minimal fraction of the neutrino
energy deposited to the proton

Fig. 8. The same as in Fig. 7 but for the different value of
µ = 0.1

Fig. 9. The same as in Fig. 7 but for the different value of
Λπ = 4 TeV

µ = 0.05. Next, Figs. 8 and 9 show the dependence of
σel(y > y0) on the parameters µ and Λπ.

Ultra-high energy cosmic neutrinos have not yet been
detected (see the non-observation of neutrino-induced
events reported by the Fly’s Eye [17], the AGASA [18] and
the RICE [19] collaborations). A number of experiments
under construction will allow one to measure fluxes of such
neutrinos within the next few years. Among them are the
Pierre Auger Observatory, the IceCube neutrino telescope
at the South Pole, the Anita radio detector for balloon
flights around the South Pole, as well as the EUSO, SalSA
and OWL proposals. We will consider the first possibility
[20].

The number of horizontal hadronic air showers with
the energy Esh larger than the threshold energy Eth, ini-
tiated by neutrino–nucleon interactions, is given by

Nsh = TNA

Emax∫
Eth

dE

×

 ∑

i=e, µ, τ

Φνi
(E)

1∫
0

dy
dσgrav

νN (E)
dy

A(yE) θ(yE − Eth)

+
∑

i=e, µ, τ

Φνi(E) σSM
νiN (E) A(ȳiEνi) θ(ȳiE − Eth)


 , (30)

where NA = 6.022 · 1023 g−1, T is the time interval (one
year, in our case), and A(E) is the detector acceptance
as a function of the shower energy (in units of km3 stera-
dian water equivalent = 1015 g). The quantity Φνi

(E) in
(30) is the flux of the neutrino of type i. Both neutrino
and antineutrino are assumed in the sums in (30). The
product E Φνi

(E) is in units of cm−2 yr−1. We have taken
into account that the energy of the shower resulting from
the gravitational interaction is equal to yE, and that this
interaction is universal for all types of neutrinos.

For the energy distribution of the neutrino in
the SM processes, we have used the approximation
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dσSM
νiN

(y, E)/dy � σ(E) δ(y − ȳi). The inelasticity ȳi de-
fines the mean fraction of the neutrino energy deposited
into the shower in the corresponding SM process. We have
put ȳe = 1 for SM charged current interactions initiated
by the electronic neutrino, while for SM neutral interac-
tions initiated by νe and for νµ/ντ events we have taken
ȳe = ȳµ = ȳτ = 0.2 [21].

The number of extensive quasi-horizontal showers in-
duced by so-called cosmogenic neutrinos which can be
detected by the array of the southern site of the Pierre
Auger Observatory, is presented in Table 1 for several sets
of the RS parameters. These values of parameters are cho-
sen in a way not violating the experimental and theoretical
bounds presented in Fig. 1.4 The cosmogenic neutrino flux
is taken from [22], assuming Emax = 3 · 1021 eV. The ac-
ceptance of the Auger detector is taken from [23] (it is not
assumed that the shower axis falls certainly in the array).
The threshold energy Eth is chosen to be 1017 eV.

For comparison, the SM background is presented in
the last row of the Table 1. This value is in agreement
with the number obtained recently for the same neutrino
flux in [24].

The cosmogenic neutrino flux is the most reliable one,
since it relies only on two assumptions:
(i) the observed extremely-high energy cosmic rays con-
tain protons;
(ii) these cosmic rays are primarily extragalactic in origin.
Note, however, that the cosmogenic neutrino flux may be
significantly depleted, if a substantial fraction of the cos-
mic ray primaries are heavy nuclei rather than protons
[25].

The cosmogenic neutrino flux not only represents a
lower limit on the flux of ultra-high energy neutrinos, but
it also can be used to put an upper limit on the neutrino
flux. In [26] an upper limit (called the WB bound) on the
flux of neutrinos from compact sources which are optically
thin to pγ and pp interactions (such as active galactic nu-
clei) has been obtained. The number of showers which can
be registered by the Auger detector for this case is shown
in Table 2. We have chosen the same threshold energy Eth
= 1017 eV and put Emax = 1021 eV.

Note that the so-called cascade upper limit on trans-
parent neutrino sources [27] (MPR bound) is 43 times
higher than the WB bound. It exploits the EGRET data
on the diffuse gamma-ray background [28].

The lower bound on the cosmogenic neutrino flux was
also obtained under the assumption that the observed
extremely-high energy cosmic rays below 1020 eV are pro-
tons from uniformly distributed extragalactic sources [29].
It uses the fact that the protons are accumulated around
the energy EGZK = 4 ·1019 eV due to the GZK mechanism
[30]. The lower cosmogenic neutrino spectrum is practi-
cally cut at Eν � 2 · 1019 eV [29]. Other recent estimates
of the cosmogenic neutrino fluxes can be found in [31,24].

4 Remember that in our notation κ/M̄Pl ≡ µ, m1 �
3.83 µΛπ.

4 Conclusions and discussions

In the present paper we have calculated the contribution
from the massive graviton modes to the eikonal in the RS
model. The results were applied to the neutrino–nucleon
scattering at trans-Planckian energies. Both differential
and total cross sections are estimated for the different
sets of the parameters of the model. By using differential
cross sections, we have calculated the number of quasi-
horizontal neutrino-induced air showers which can be de-
tected at the Auger Observatory per year. The estimates
were obtained for two fluxes of cosmogenic neutrinos.

The differential cross section, dσ(y)/dy, where y is the
fraction of the neutrino energy Eν deposited to the shower,
can reach tens of mb at y = 0, depending on the energy
(Fig. 6). However, the differential cross section exhibits a
rapid fall-off in y, starting at some small y. As a result, the
gravitational cross section appears to be approximately
one order of magnitude larger than the SM cross section
at the same energy. To illustrate this statement, let us fix
the parameters of the RS model to be Λπ = 2 TeV, µ = 0.1.
Then we have (dσ(y)/dy)|y=0 � 4 mb for Eν = 1010 GeV
(see Fig. 6). As one can see in Fig. 6, dσ(y)/dy begins to
fall rapidly at y > 10−5. The numerical calculations show
that σ � 4 ·10−4 mb for this case (dashed curve in Fig. 8).

The energy of the neutrino-induced air shower, Esh =
yEν , is bounded from below by the threshold energy
Eth. Thus, the fraction y should obey the inequality
y � Eth/Emax, where Emax is the maximum energy in
the neutrino spectrum. For Eth = 108 GeV and Emax =
1011(12) GeV, we get y � 10−3(4). Thus, the air shower
event rate is defined by the region of y in which the
neutrino–nucleon cross section dσ(y)/dy is significantly
reduced in comparison with its magnitude at y = 0. Nev-
ertheless, the gravity contribution to the event rate at the
Auger detector is several times larger than the SM back-
ground, as one can see from Tables 1 and 2.

Recently, model independent bounds on the inelastic
neutrino–nucleon cross section derived from the AGASA
[18] and RICE [19] search results on neutrino events were
obtained [24]. The bounds exploit the cosmogenic neutrino
fluxes from [22,29]. However, they were derived under the
assumption that the total neutrino energy goes into the
shower energy; that is, y = 1. As we have seen, this is not
the case for the gravitational interactions originating from
t-channel KK gravitons, which prefer y � 1.5 Generally, in
order to extract an upper limit on σtot, the dependence of
dσ(y)/dy on y is needed. So we conclude that the bounds
from [24] cannot be directly apply to the neutrino–nucleon
cross sections derived in our scheme.

Acknowledgements. The author is indebted to V.A. Petrov for
discussions and valuable remarks.

5 In processes initiated by graviton t-channel exchanges in
large extra dimensions the mean energy loss is also small, as
was pointed out in [34]. On the contrary, in the process of black
hole production, the neutrino loses most of its initial energy
(y ≈ 1).
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Table 1. Yearly event rates for nearly horizontal neutrino-induced showers with
θzenith > 70◦ for the cosmogenic neutrino flux from [22] for three sets of the pa-
rameters. The number of events corresponds to one side of the Auger ground array

Λπ = 2 TeV, µ = 0.10 Λπ = 3 TeV, µ = 0.05 Λπ = 3 TeV, µ = 0.10
SM+grav 0.81 0.66 0.43
SM 0.24

Table 2. The same as in Table 1 but for the Waxman–Bahcall neutrino flux [26]

Λπ = 2 TeV, µ = 0.10 Λπ = 3 TeV, µ = 0.05 Λπ = 3 TeV, µ = 0.10
SM+grav 1.03 0.78 0.49
SM 0.28

Appendix

In this appendix we calculate the dependence of the
eikonal (20) on the variable u (19). Let us define

I(u) =

∞∫
0

dx J0(ux) R(x), (A.1)

with

R(x) =
I2(x)
I1(x)

(A.2)

being the ratio of two modified Bessel functions.
It easily to see from (A.1) that I(u) → u−1 at u → 0,

since R(x) → 1 at x → ∞. The asymptotics of I(u) at
large u is defined by the behavior of the integrand at small
x which looks like

R(x) � x

4
− x3

96
+

x5

1536
− x7

23040
+ O(x9). (A.3)

Let us now demonstrate that at u → ∞ the function
I(u) (A.1) decreases faster that any fixed power of u−1.
By using the well-known relation [32]

xν−1Jν−1(ux) =
1
u

(
d

x dx

) [
xνJν(ux)

]
, (A.4)

and integrating (A.1) by parts k times, we obtain

I(u) =
1
uk

∞∫
0

dx Jk(ux)Fk(x), (A.5)

where Jk(z) is the Bessel function, and

Fk(x) = (−1)k xk+1
(

d
x dx

)k [
R(x)

x

]
. (A.6)

The function Fk(x) (A.6) has the following properties:
it is proportional to xk+1 at x → 0, and it decreases as
x−k at x → ∞. For any positive integer k, it depends
only on x and on the ratio R(x), see (A.2), (but not on

I1(x) and I2(x) separately) due to the following relations
between modified Bessel functions [32]:

d
dx

I1(x) = I2(x) +
1
x

I1(x),

d
dx

I2(x) = I1(x) − 2
x

I2(x). (A.7)

For instance, for k = 1 one has

F1(x) = −1 +
4R(x)

x
+

[
R(x)

]2
. (A.8)

This expression has asymptotics x2/48 and x−1 at small
and large x, respectively. For k = 2 one gets

F2(x) =
1
x

{
−6

[
1 − 4R(x)

x

]
− 2x R(x) + 12

[
R(x)

]2

+ 2x
[
R(x)

]3}
. (A.9)

The asymptotics of F2(x) are x3/192 and 3x−2.
Since k is an arbitrary positive integer, we conclude

from (A.5) and (A.6) that lim
u→∞ ua I(u) = 0 for any a > 0.

The integral in (A.5), contrary to the original one in
(A.1), converges rapidly at x → ∞ for k � 2, and could
be used for numerical calculations. It cannot be calculated
analytically. However, there exists an expression which ap-
proximates our integral with a very high accuracy:

Ī(u) =

∞∫
0

dx J0(ux) R̄(x), (A.10)

with

R̄(x) =
√

3
2

x√
x2 + 12

. (A.11)

The function R̄(x) has the following expansion at x2 < 12
(compare with (A.3)):

R̄(x) � x

4
− x3

96
+

x5

1536
− 5 x7

110592
+ O(x9). (A.12)
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Fig. 10. The exact integrand versus the approximate one (af-
ter the integration of both integrals by parts twice). See the
appendix for details

The integral (A.10) can be found in a Table [33]:

Ī(u) =
√

3
2u

exp(−2
√

3 u). (A.13)

We can integrate the RHS of (A.10) twice by parts,

Ī(u) =
1
u2

∞∫
0

dx J2(ux) F̄2(x), (A.14)

and compare F̄2(x) = (3
√

3/2) x3/(x2 + 12)5/2 with the
corresponding function F2(x); see (A.9). The result of our
calculations is presented in Fig. 10. Equation (A.13) gives
practically the same dependence on variable u as the nu-
merical integration of the exact expression by using (A.5)
(with k = 2) does; see Fig. 11.6 Thus, I(u) exhibits an
exponential fall-off (as we expected; see above), and it be-
comes as small as I(u) � 0.01 already at u = 1.2.

Taking all that was said above into account, we put
I(u) → Ī(u), which results in the analytical expression
for the eikonal as presented in the text, (21).
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